
WYKÃLAD 9 Z TEORII ERGODYCZNEJ

(PO ANGIELSKU)

SIGNAL PROCESSES

Introduction

By a signal process we will understand a continuous time1 process X = (Xt)t∈R
defined on a probability space (Ω, P ) and assuming integer values, such that X0 = 0
a.s., and with nondecreasing and right-continuous trajectories t 7→ Xt(ω). We say
that (for given ω ∈ Ω) a signal (or several simultneous signals) occurs at time t if
the trajectory Xt(ω) jumps by a unit (or several units) at t.

A signal process is homogeneous if, for every finite set of times t1 < t2 < · · · < tn
and any t0 ∈ R, the joint distribution of the increments

Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1 (1)

is the same as that of

Xt2+t0 −Xt1+t0 , Xt3+t0 −Xt2+t0 , . . . , Xtn+t0 −Xtn−1+t0 .

The most basic example of a stationary signal process is the Poisson process. It is
characterized by two properties: 1. the increments as described in (1) are indepen-
dent, and 2. jumps by more the one unit have probability zero. These properties
imply that the distribution of X1 is the Poisson distribution with some parameter
λ ≥ 0 (i.e., P{X1 = k} = e−λ λk

k! , k = 0, 1, . . . ). The parameter λ is called the
intensity and equals the expected number of signals per unit of time.

Given a signal process (Xt), by the waiting time we will understand the random
variable defined on Ω as the time of the first signal after time 0:

V (ω) = min{t : Xt(ω) ≥ 1}.

We denote by F (or FX if the reference to the process is needed) the distribution
function of the waiting time V̄ .

Special flows versus signal processes

We will first recall some basic information about flows - i.e., dynamical systems
with continuous time. By a flow (Ω, Σ, µ, Tt) we will understand the action of a
group of measurable and measure µ-preserving transformations Tt (t ∈ R) on a
probability space (Ω,Σ, µ), satisfying the composition rule Tt+s = Tt ◦Ts, and such
that the trajectories t 7→ Tt(ω) are measurable for almost every ω ∈ Ω.

Now suppose we have a probability space (B, ν) and a measure ν-preserving
bijection φ : B → B. There is a specific method of building a flow based on a the
single map φ and a nonnegative integrable function f defined on B. Let θ =

∫
fdν.

1also discrete time, when the increment of time is very small
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We will describe so-called special flow for which f has the name of a roof function.
The space Ω for the flow is defined as the area below the graph of f :

Ω = {(x, y) ∈ B × R : 0 ≤ y < f(x)},

the measure is µ = ν × η
θ , where η is the Lebesgue measure on R. Clearly, µ is a

probability measure on Ω. The special flow is now defined as follows:

Tt(x, y) =
{

(x, y + t) y + t < f(x)
(φ(x), 0) y + t = f(x).

For t larger than f(x) − y we divide t into smaller pieces and apply the above
formula and the composition rule.

Each point ω = (x, y) travels upward with unit speed until it reaches the “roof”. Then it

jumps to the “floor” at (φ(x), 0), continues upward, and so on.

Such a special flow gives raise to a signal process X defined on the same space
(Ω, µ): for each ω the signals are identified with the visits of the trajectory of ω at
the floor. In other words

Xt(ω) = #{s ∈ (0, t] : Ts(ω) ∈ B × {0}}.

We now compute the intensity λ of this process:

Theorem.
λ = θ−1.

Proof. First we replace X1 by X ′
1 = X0−X−1 (it counts the signals between times

−1 and 0). Then

λ = E(X1) = E(X ′
1) =

∞∑

k=1

kµ({X ′
1 = k}) =

∞∑

k=1

µ({X ′
1 ≥ k}).

Now we draw the diagram with the graphs of the functions g0 = 0, g1 = f , g2 =
f + f ◦ φ, g3 = f + f ◦ φ + f ◦ φ2, etc.
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This diagram shows multiple copies of the set Ω; one between each pair of the
graphs. On this diagram each point (x, y) travels up with unit speed, and, meeting
a graph, instead of jumping to the floor, it passes to another copy of Ω. The signals
correspond to such passages. Thus, in order to count the signals between times 0
and −1 for such point, we need to see how many graphs are there between (x, y)
and (x, y − 1). It is now easy to see that the sets {X ′

1 ≥ k} correspond (each in a
different copy of Ω) to the areas between the graphs of gk−1 and gk and below the
line y = 1 (see the figure). Together they add up to the full rectangle between the
lines 0 and 1, whose measure µ is θ−1 (recall that on the second coordinate we use
the Lebesgue measure times θ−1). Eventually we have obtained that

λ = θ−1.

¤

It is important, that in fact every signal process with intensity λ can be modeled
in this way, using a special flow, under a roof function of integral λ−1. In this
approach we have a new random variable R defined on the floor (B,µ) and called
the return time. This is simply the roof function f and its expected value is λ−1.
If G denotes the distribution function of R, then the inverse R′ of G (with intervals
of constancy turned into jumps and vice-versa), treated as a variable on the unit
interval with the Lebesgue measure, has the same distribution as R.
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We can replace R by the inverse of G defined on the interval [0,1].

We can now derive a relation between the distribution function G of R and F of
the waiting time V . Fix some t > 0. We have

F (t) = µ{V ≤ t} = µ{Xt ≥ 1} = µ{X ′
t ≥ 1}

(where, like before, X ′
s = X0 − X−s). On the picture of Ω (the area below the

graph of f), the latter set is the region below the (horizontal) line y = t which can
be as well drawn on the graph of R′. On the graph of the distribution function G,
this corresponds to the area above G and to the left of the (vertical) line y = t.

Thus, taking into account the factor θ−1 = λ in evaluating probabilities from areas
on the diagram, we obtain

F (t) = λ

∫ t

0

1−G(y) dy.

As an immediate corollary, we get that F is always a continuous and concave
function.


